Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 357: 142077, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38643843

RESUMEN

Organic fraction of municipal solid waste (OFMSW) and waste activated sludge (WAS) are the most produced organic waste streams in urban centres. Their anaerobic co-digestion (AcoD) allows to generate methane (CH4) and digestate employable as renewable energy source and soil amendment, respectively, fully in accordance with circular bioeconomy principles. However, the widespread adoption of such technology is limited by relatively low CH4 yields that fail to bridge the gap between benefits and costs. Among strategies to boost AcoD of OFMSW and WAS, use of conductive materials (CMs) to promote interspecies electron transfer has gained increasing attention. This paper presents one of the few experimental attempts of investigating the effects of four different carbon(C)-based CMs (i.e., granular activated carbon - GAC, graphite - GR, graphene oxide - GO, and carbon nanotubes - CNTs) separately added in semi-continuous AcoD of OFMSW and thickened WAS. The presence of C-based CMs has been observed to improve CH4 yield of the control process. Specifically, after 63 days of operation (concentrations of GAC and GR of 10.0 g/L and of GO and CNTs of 0.2 g/L), 0.186 NL/gVS, 0.191 NL/gVS, 0.203 NL/gVS, and 0.195 NL/gVS of CH4 were produced in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.177 NL/gVS produced in the control process. Likewise, at the end of the test (i.e., after 105 days at concentrations of C-based CMs half of the initial ones), CH4 yields were 0.193 NL/gVS, 0.201 NL/gVS, 0.211 NL/gVS, and 0.206 NL/gVS in reactors supplemented with GAC, GR, GO, and CNTs, respectively, compared to 0.186 NL/gVS of the control process. Especially with regard to GR, GO, and CNTs, results obtained in the present study represent a significant advance of the knowledge on the effects of such C-based CMs to realistic and scalable AD process conditions respect to previous literature.

2.
Sci Rep ; 14(1): 8293, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594337

RESUMEN

The production of micro and nanofibers through the electrospinning technique is a well assessed technology that finds application in a variety of fields. Indeed, the specific features of electrospun fibers, as well as the possibility to be modelled and functionalized, ensure their great versatility. In the last decades, the widespread use of electrospun fibers promoted studies related to the evaluation of both human health and environmental risks associated to their handling and exposure. However, to date, the environmental impact strictly related to the use of the manufacturing process has been barely considered. Therefore, the present work aims to assess the environmental impacts of the electrospinning technology used to produce micro and nanofibers. To this purpose, a model polymer was systematically electrospun, varying the main system, process and external parameters, that control the electrospinning technique. A simplified life cycle assessment analysis was finally used to evaluate how the fibrous morphology, closely linked to the choice of the technological parameters, intrinsically affected the environmental impacts.

3.
Materials (Basel) ; 16(5)2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36903218

RESUMEN

Membrane technologies and materials development appear crucial for the hydrogen/natural gas separation in the impending transition to the hydrogen economy. Transporting hydrogen through the existing natural gas network could result less expensive than a brand-new pipe system. Currently, many studies are focused on the development of novel structured materials for gas separation applications, including the combination of various kind of additives in polymeric matrix. Numerous gas pairs have been investigated and the gas transport mechanism in those membranes has been elucidated. However, the selective separation of high purity hydrogen from hydrogen/methane mixtures is still a big challenge and nowadays needs a great improvement to promote the transition towards more sustainable energy source. In this context, because of their remarkable properties, fluoro-based polymers, such as PVDF-HFP and NafionTM, are among the most popular membrane materials, even if a further optimization is needed. In this study, hybrid polymer-based membranes were deposited as thin films on large graphite surfaces. Different weight ratios of PVDF-HFP and NafionTM polymers supported over 200 µm thick graphite foils were tested toward hydrogen/methane gas mixture separation. Small punch tests were carried out to study the membrane mechanical behaviour, reproducing the testing conditions. Finally, the permeability and the gas separation activity of hydrogen/methane over membranes were investigated at room temperature (25 °C) and near atmospheric pressure (using a pressure difference of 1.5 bar). The best performance of the developed membranes was registered when the 4:1 polymer PVDF-HFP/NafionTM weight ratio was used. In particular, starting from the 1:1 hydrogen/methane gas mixture, a 32.6% (v%) H2 enrichment was measured. Furthermore, there was a good agreement between the experimental and theoretical selectivity values.

4.
Planta ; 256(6): 118, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36376619

RESUMEN

MAIN CONCLUSIONS: C. campestris parasitisation increases internal host defences at the expense of environmentally directed ones in the host species A. campestris, thus limiting plant defence against progressive parasitisation. Cuscuta campestris Yunck is a holoparasitic species that parasitises wild species and crops. Among their hosts, Artemisia campestris subsp. variabilis (Ten.) Greuter is significantly affected in natural ecosystems. Limited information is available on the host recognition mechanism and there are no data on the interactions between these species and the effects on the primary and specialised metabolism in response to parasitisation. The research aims at evaluating the effect of host-parasite interactions, through a GC-MS untargeted metabolomic analysis, chlorophyll a fluorescence, ionomic and δ13C measurements, as well as volatile organic compound (VOC) fingerprint in A. campestris leaves collected in natural environment. C. campestris parasitisation altered plant water status, forcing stomatal opening, stimulating plant transpiration, and inducing physical damages to the host antenna complex, thus reducing the efficiency of its photosynthetic machinery. Untargeted-metabolomics analysis highlighted that the parasitisation significantly perturbed the amino acids and sugar metabolism, inducing an increase in the production of osmoprotectants, which generally accumulate in plants as a protective strategy against oxidative stress. Notably, VOCs analysis highlighted a reduction in sesquiterpenoids and an increase in monoterpenoids levels; involved in plant defence and host recognition, respectively. Moreover, C. campestris induced in the host a reduction in 3-hexenyl-acetate, a metabolite with known repellent activity against Cuscuta spp. We offer evidences that C. campestris parasitisation increases internal host defences via primary metabolites at the expense of more effective defensive compounds (secondary metabolites), thus limiting A. campestris defence against progressive parasitisation.


Asunto(s)
Artemisia , Cuscuta , Cuscuta/metabolismo , Ecosistema , Clorofila A/metabolismo , Fotosíntesis
5.
Materials (Basel) ; 14(11)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34206003

RESUMEN

Contamination by heavy metals is currently one of the most environmental concerns especially due to the toxicity, pervasiveness, and persistence of these substances. As they are not biodegradable, heavy metals are harmful not only for water, air, and soil but also for human health, even in very low traces. There is therefore a pressing need to develop an efficient, economic, and rapid analysis method to be applied in a wide range of conditions and able to detect very low contaminants concentrations. Currently, the most novel solution in this field is represented by the combination of electrospun nanofibers and highly sensitive electrochemical techniques. It has been proved that nanofibers, due to their outstanding properties, perfectly fit as sensing material when trace concentrations of heavy metals were investigated by anodic stripping voltammetry, envisaged as the most sensitive electrochemical technique for this kind of measurements. This work aims to provide an overview of the latest trends in the detection of contaminants by the simultaneous use of electrospun fibers and anodic stripping voltammetry. Indeed, a clear and comprehensive vision of the current status of this research may drive future improvements and new challenges.

6.
Nanomaterials (Basel) ; 11(5)2021 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-34065931

RESUMEN

Conducting nanofibers of polyaniline (PANI) doped with camphor-10-sulfonic acid (HCSA) and blended with different polymers, such as polymethyl methacrylate (PMMA) and polyvinyl acetate (PVAc), have been fabricated using the electrospinning technique. Scanning electron microscopy (SEM) and thermal gravimetric analysis (TGA) were utilized to characterize the morphology and the thermal stability of PANI-blended fibers. An extensive study was performed to understand the copolymer influence on both the structural and surface properties of the realized conductive thin films. Samples main electrical characteristics, as conductivity, specific capacitance and electrochemical performances were tested. The better mats were obtained with the use of PVAc copolymer, which showed a conductivity value two orders of magnitude higher than the PMMA system. Aiming at further improving the electrochemical features of these blended mats, hybrid fibers based on PANI/PVAc/graphene oxide and PANI/PVAc/iron oxide were also produced and characterized. The obtained mats were potentially addressed to numerous practical fields, including sensors, health applications, smart devices and multifunctional textile materials.

7.
Micromachines (Basel) ; 10(5)2019 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-31121927

RESUMEN

In this study, UV irradiation was used to improve the response of indium oxide (In2O3) used as a CO sensing material for a resistive sensor operating in a low temperature range, from 25 °C to 150 °C. Different experimental conditions have been compared, varying UV irradiation mode and sensor operating temperature. Results demonstrated that operating the sensor under continuous UV radiation did not improve the response to target gas. The most advantageous condition was obtained when the UV LED irradiated the sensor in regeneration and was turned off during CO detection. In this operating mode, the semiconductor layer showed an apparent "p-type" behavior due to the UV irradiation. Overall, the effect was an improvement of the indium oxide response at 100 °C toward low CO concentrations (from 1 to 10 ppm) that showed higher results than in the dark, which is promising to extend the detection of CO with an In2O3-based sensor in the sub-ppm range.

8.
Materials (Basel) ; 11(12)2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30558326

RESUMEN

A new generation of compressor-free heat pumps based on adsorption technology and driven by solar energy is available. Performance and costs are, however, the main obstacles to their commercial diffusion, and more material and system developments are required. In this work, a new coating made of microfibres produced by the electrospinning of polymer/zeolite mixtures is presented. Three different polymer carriers, polyvinyl acetate, polyethylene oxide and polystyrene, have been used together with zeolite SAPO-34 as an adsorbing material. Electrospun microfibres showed a mean diameter ranging from 0.75 µm to 2.16 µm depending on the polymer carrier, with a zeolite content from 60 wt.% to 87 wt.%. Thermal analysis (TGA-DSC) results showed that water desorption from microfibres at T = 150 °C was close to 17 wt.%, a value in agreement with the adsorption capacity of pure SAPO-34. The morphology characterization of coatings demonstrated that the microfibre layers are highly porous and have an elevated surface area.

9.
Beilstein J Nanotechnol ; 6: 2028-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26665073

RESUMEN

Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp(2) carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 10(5) S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.

10.
Breast Cancer Res Treat ; 134(2): 595-602, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22674190

RESUMEN

The ErbB2 receptor is a proto-oncogene associated with a poor prognosis in breast cancer. Herceptin, the only humanized anti-ErbB2 antibody currently in clinical use, has proven to be an essential tool in the immunotherapy of breast carcinoma, but induces cardiotoxicity. ErbB2 is involved in the growth and survival pathway of adult cardiomyocytes; however, its levels in the adult heart are much lower than those found in breast cancer cells, the intended targets of anti-ErbB2 antibodies. Furthermore, clinical trials have shown relatively low cardiotoxicity for Lapatinib, a dual kinase inhibitor of EGFR and ErbB2, and Pertuzumab, a new anti-ErbB2 monoclonal antibody currently in clinical trials, which recognizes an epitope distant from that of Herceptin. A novel human antitumor compact anti-ErbB2 antibody, Erb-hcAb, selectively cytotoxic for ErbB2-positive cancer cells in vitro and vivo, recognizes an epitope different from that of Herceptin, and does not show cardiotoxic effects both in vitro on rat and human cardiomyocytes and in vivo on a mouse model. We investigated the molecular basis of the different cardiotoxic effects among the ErbB2 inhibitors by testing their effects on the formation of the Neuregulin 1ß (NRG-1)/ErbB2/ErbB4 complex and on the activation of its downstream signaling. We report herein that Erb-hcAb at difference with Herceptin, 2C4 (Pertuzumab) and Lapatinib, does not affect the ErbB2-ErbB4 signaling pathway activated by NRG-1 in cardiac cells. These findings may have important implications for the mechanism and treatment of anti-ErbB2-induced cardiotoxicity.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Quinazolinas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales Humanizados/toxicidad , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Femenino , Humanos , Lapatinib , Sistema de Señalización de MAP Quinasas , Mioblastos Cardíacos/efectos de los fármacos , Mioblastos Cardíacos/metabolismo , Mioblastos Cardíacos/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/fisiología , Unión Proteica , Proto-Oncogenes Mas , Quinazolinas/toxicidad , Ratas , Receptor ErbB-2/metabolismo , Receptor ErbB-4 , Trastuzumab
11.
Oncol Rep ; 28(1): 297-302, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22505344

RESUMEN

Prostate cancer is the most commonly diagnosed malignancy in men in developed countries. ErbB2, a tyrosine kinase receptor overexpressed in many human cancer types, contributes to prostate cancer progression by activating the androgen receptor in a steroid poor environment, thus promoting androgen-independent cell growth. The consequent development of hormone refractory tumors is a major obstacle in prostate cancer therapy. The inhibition of ErbB2 signal transduction pathways by the use of human antibodies could be a valuable alternative strategy for cancer therapy. We performed a comparative analysis in vitro and in vivo of the antitumor effects of three different antibodies targeting different epitopes of ErbB2: Herceptin (trastuzumab), 2C4 (pertuzumab) and Erb-hcAb (human anti-ErbB2-compact antibody), a novel fully human compact antibody produced in our laboratory. Herein, we demonstrate that the growth of both androgen-dependent and independent prostate cancer cells was efficiently inhibited by Erb-hcAb. The antitumor effects induced by Erb-hcAb on some cell lines were more potent than those observed for either Herceptin or 2C4. Thus, Erb-hcAb could be a promising candidate in the immunotherapy of prostate cancer for which no obvious treatment has been reported so far.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antineoplásicos/farmacología , Neoplasias de la Próstata/tratamiento farmacológico , Proteínas Recombinantes de Fusión/farmacología , Animales , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Monoclonales Humanizados/farmacocinética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Semivida , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias de la Próstata/metabolismo , Unión Proteica , Receptor ErbB-2/metabolismo , Proteínas Recombinantes de Fusión/farmacocinética , Proteínas Recombinantes de Fusión/uso terapéutico , Distribución Tisular , Trastuzumab , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...